Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.04.22270304

ABSTRACT

Systematic SARS-CoV-2 testing is a valuable tool for infection control and surveillance. However, broad application of high sensitive RT-qPCR testing in children is often hampered due to unpleasant sample collection, limited RT-qPCR capacities, and high costs. Here, we developed a high-throughput approach (Lolli-Method) for sensitive SARS-CoV-2 detection in children, combining non-invasive sample collection with an RT-qPCR-pool testing strategy. SARS-CoV-2 infections were diagnosed with sensitivities of 100% and 93.9% when viral loads were >10E6 copies/ml and >10E3 copies/ml in corresponding Naso-/Oropharyngeal-swabs, respectively. For effective application of the Lolli-Method in schools and daycare facilities, SIR-modeling indicated a preferred frequency of two tests per week. The developed test strategy was implemented in 3,700 schools and 698 daycare facilities in Germany, screening over 800,000 individuals twice per week. In a period of 3 months, 6,364 pool-RT-qPCRs tested positive (0.64%) ranging from 0.05% to 2.61% per week. Notably, infections correlated with local SARS-CoV-2 incidences as well as with a school social deprivation index. Moreover, in comparison with the alpha variant, statistical modeling revealed a 31% increase for multiple (>1 child) infections per class following infections with the delta variant. We conclude that the Lolli-Method is a powerful tool for SARS-CoV-2 surveillance and infection control in schools and daycare facilities.


Subject(s)
Sleep Deprivation , Severe Acute Respiratory Syndrome , COVID-19
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.18.21264530

ABSTRACT

Integration of genomic surveillance with contact tracing provides a powerful tool for the reconstruction of person-to-person pathogen transmission chains. We report two large clusters of SARS-CoV-2 cases ("Delta" clade, 110 cases combined) detected in July 2021 by Integrated Genomic Surveillance in Dusseldorf. Structured interviews and deep contact tracing demonstrated an association to a single SARS-CoV-2 infected return traveller (Cluster 1) and to return travel from Catalonia and other European countries (Cluster 2), highlighting the importance of containing travel-imported SARS-CoV-2 infections.


Subject(s)
Severe Acute Respiratory Syndrome
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.13.21251678

ABSTRACT

Viral genome sequencing can address key questions about SARS-CoV-2 evolution and viral transmission. Here, we present an integrated system of genomic surveillance in the German city of Dusseldorf, combining a) viral surveillance sequencing, b) genetically based identification of infection clusters in the population, c) analysis of hospital outbreaks, d) integration of public health authority contact tracing data, and e) a user-friendly dashboard application as a central data analysis platform. The generated surveillance sequencing data (n = 320 SARS-CoV-2 genomes) showed that the development of the local viral population structure from August to December 2020 was consistent with European trends, with the notable absence of SARS-CoV-2 variants 20I/501Y.V1/B.1.1.7 and B.1.351 until the end of the local sampling period. Against a background of local surveillance and other publicly available SARS-CoV-2 data, four putative SARS-CoV-2 outbreaks at Dusseldorf University Hospital between October and December 2020 (n = 44 viral genomes) were investigated and confirmed as clonal, contributing to the development of improved infection control and prevention measures. An analysis of the generated surveillance sequencing data with respect to infection clusters in the population based on a greedy clustering algorithm identified five candidate clusters, all of which were subsequently confirmed by the integration of public health authority contact tracing data and shown to be represent transmission settings of particular relevance (schools, care homes). A joint analysis of outbreak and surveillance data identified a potential transmission of an outbreak strain from the local population into the hospital and back; and an in-depth analysis of one population infection cluster combining genetic with contact tracing data enabled the identification of a previously unrecognized population transmission chain involving a martial arts gym. Based on these results and a real-time sequencing experiment in which we demonstrated the feasibility of achieving sample-to-turnaround times of <30 hours with the Oxford Nanopore technology, we discuss the potential benefits of routine ultra-fast sequencing of all detected infections for contact tracing, infection cluster detection, and, ultimately, improved management of the SARS-CoV-2 pandemic.


Subject(s)
Cluster Headache
SELECTION OF CITATIONS
SEARCH DETAIL